1933 – USA

‘‘The Mechanism of Mendelian Heredity’ (1915), ‘The Theory of the Gene’ (1926)’

Morgan laid the foundation for understanding MENDEL’s observations and helped to provide the science required to reinforce CHARLES DARWIN’s conclusions.

Starting with Mendel’s laws of segregation and independent assortment, Morgan investigated why there are far fewer chromosomes – the long thread-like structures present in the nucleus of every living cell, which grow and divide during cell splitting, – than there are ‘units of heredity’. Morgan could not see how these few chromosomes could account for all the changes that occur from one generation to the next.

Mendel’s ‘factors of heredity’ had been renamed ‘genes’ in 1909 by the Dane Wilhelm Johannsen.

When the organism forms its reproductive cells (gametes), the genes segregate and pass to different gametes.
Since it had been separately established that chromosomes play an important part in inheritance, then groups of genes had to be present on a single chromosome.
If all the genes were arranged along chromosomes, and all chromosomes were transmitted intact from one generation to the next, then many characteristics would be inherited together. This implicitly invalidates Mendel’s law of independent assortment, which dictated that hereditary traits caused by genes would occur in all possible mathematical combinations in a series of descendants, independent of each other.

Experimental evidence often seemed to back-up the mathematical forecasts for characteristics present in descendants that Mendel had suggested; Morgan felt that the law of independent assortment could not accurately model the process of arriving at the end result.

He began his experiments with the fruit fly, which has just four pairs of chromosomes, in 1908.
He observed a mutant white-eyed male fly, which he extracted for breeding with ordinary red-eyed females. Over subsequent generations of interbred offspring, the white-eyed trait returned in some descendants, all of which turned out to be males. Clearly, certain genetic traits were not occurring independently of each other but were being passed on in groups.
Rather than invalidating Mendel’s law of independent assortment, a simple adjustment was required to unite it with Hunt’s belief in chromosomes to produce his thesis.
He suggested that the law of independent assortment did apply – but only to genes found on different chromosomes. For those on the same chromosome, linked traits would be passed on; usually a sex-related factor with other specific features (such as, the male sex and the white-eyed characteristic).

The results of his work convinced Morgan that genes were arranged on chromosomes in a linear manner and could be mapped. Further testing showed that, as chromosomes actually break apart and re-form during the production of sperm and egg cells, linked traits could occasionally be broken during the exchange of genes (recombination) that occurred between pairs of chromosomes during the process of cell division. He hypothesised that the nearer on the chromosome the genes were located to each other, the less likely the linkages were to be broken. Thus by measuring the occurrence of breakages he could work out the position of the genes along the chromosome.
In 1911 he produced the first chromosome map showing the position of five genes linked to gender characteristics.

In 1933 Hunt Morgan received the Nobel Prize for Physiology.

picture of the Nobel medal - link to

Wikipedia-logo © (link to wikipedia)

Wikipedia-logo © (link to wikipedia)



Related articles


1859 – England

‘All present day species have evolved from simpler forms of life through a process of natural selection’

Portrait of Charles Darwin ©

Organisms have changed over time and the ones living today are different from the ones that lived in the past. Furthermore, many organisms that once lived are now extinct.

The orthodox view was that of the Creationists. According to the Book of Genesis in the Bible, ‘God created every living creature that moves….’. Against this background, thinkers such as French naturalist Jean-Baptist Lamarck developed a picture of how species evolved from single-celled organisms.

Darwin’s breakthrough was to work out what evolution is and how it happens. His insight was to focus on individuals, not species and to show how individuals evolve by natural selection. The mechanism explained how all species evolved to become well suited to their environment. Later commentators have characterized this idea as ‘survival of the fittest,’ but this was never a phrase that Darwin himself used.

Darwin was influenced by CHARLES LYELL’s newly published book ‘Principles of Geology’, showing how landscapes had evolved gradually through long cycles of erosion and upheaval and by ‘An Essay on the Principle of Population’ written in 1798 by THOMAS MALTHUS.

The publication of Darwin’s book ‘On the Origin of Species by Means of Natural Selection’ in 1859 generated social and political debate that continues to this day. Darwin did not discuss the evolution of humans in this book.
In ‘The Descent of Man’, published in 1871, he presented his explanation of how his theory of evolution applied to the idea that humans evolved from apes. In modern form the theory contains the following ideas:

  • members of a species vary in form and behaviour and some of this variation has an inherited basis

  • every species produces far more offspring than the environment can support

  • some individuals are better adapted for survival in a given environment than others

this means that there are variations within each population gene pool and individuals with most favourable variations stand a better chance of survival – the survival of the fittest.

  • the favourable characteristics show up among more individuals of the next generation

there is thus a ‘natural selection’ for those individuals whose variations make them better adapted for survival and reproduction.

  • the natural selection of strains of organisms favours the evolution of new species, through better adaptation to their environment, as a consequence of genetic change or mutation.

Knowledge of DNA has enriched the theory of evolution. The modern view is still based on the Darwinian foundation; evolution through natural selection is opportunistic and it takes place steadily.

Wikipedia-logo © (link to wikipedia)




1735 – Sweden

‘A system for naming organisms by assigning them scientific names consisting of two parts’

Portrait of Linnaeus ©


Each species is given a two-word Latin name – The genus name that comes first and begins with a capital letter, and the species name, which begins with a lower case letter. The genus name is often abbreviated, and the names are always written in italics or underlined. The Linnaean system has six classification categories – in descending order, kingdoms, phyla, classes, orders, genera and species. Only two are used for naming organisms.

German botanist Rudolph Camerarius (1665-1721) had shown that no seed would grow without first being pollinated. In 1729, Linnaeus wrote in a paper about ‘the betrothal of plants, in which …..the perfect analogy with animals is concluded’. He insisted that it is the stamens where pollen is made (the ‘bridegrooms’) and the pistils where seeds are made (‘the brides’) that are the sexual organs, and not the petals as had been considered previously.

As botanists and zoologists looked at nature, or ‘Creation’, there was no way of classifying the animal kingdom depicted in bestiaries of the time but alphabetically; or of distinguishing the real from the mythical.

Linnaeus developed a system of classification that had two key features. Starting with the plant kingdom, Linnaeus grouped plants according to their sexual organs – the parts of the plant involved in reproduction. Each plant species was given a two-part Latin name. The first part always refers to the name of the group it belongs to, and the second part is the species name.

Linnaeus divided all flowering plants into twenty-three classes according to the length and number of their stamens – the male organs, – then subdivided these into orders according to the number of pistils – female organs, – that they possessed. A twenty-fourth class, the Cryptogamia, included the mosses and other non-flowering plants.

illustration of flower reproductive structures ©

Many people were offended by the sexual overtones in Linnaeus’s scheme. One class he named Diandria, meaning ‘two husbands in one marriage’, while he said ‘the calyx might be regarded as the labia majora; one could regard the corolla as the labia minora’. For almost a century, botany was not seen as a decent thing for young-ladies to be interested in.

Linnaeus’s scheme was simple and practical and in 1745 he published an encyclopedia of Swedish plants, when he began considering the names of species. Realizing he had to get the names in place before someone else gave plants other names, he gave a binomial label to every known plant species and in 1753 published all 5,900 in his Species Plantarium.

Believing his work on the plant kingdom complete, he turned his attention to the animal kingdom. In his earlier Systema Naturae of 1735, he had used the classification ‘Quadrupeds’ (four-legged creatures) but replaced this with Mammals, using the presence of mammary glands for suckling young as a more crucial distinguishing characteristic. The first or prime group in the Mammals was the primates, which included Homo sapiens (wise man). His catalogue of animals was included in the tenth edition of Systema Naturae, listed with binomial names.

By the time Linnaeus died it was the norm for expeditions around the world to take a botanist with them, hence CHARLES DARWIN’s famous voyage on the Beagle.

Wikipedia-logo © (link to wikipedia)

Wikispecies-logo ©