GUSTAV KIRCHHOFF (1824- 87)

1845 – Germany

‘First law (Junction law): At any junction point in an electrical circuit, the sum of all currents entering the junction must equal the sum of all currents leaving the junction’

‘Second law (Loop law): For any closed loop in an electrical circuit, the sum of the voltages must add up to zero’

In equation form the first law is I = I1 + I2 + I3 + I4 +…. where I is the total current and I1, I2, I3 etc. are the separate currents.

Second law is V = V1 + V2 + V3 + … where V is the total voltage and V1, V2, V3 etc. are the separate voltages.

photo portrait of GUSTAV KIRCHHOFF ©

GUSTAV KIRCHHOFF

These laws are an extension of OHM‘s law and are used for calculating current and voltage in a network of circuits. Kirchhoff formulated these laws when he was a student at the University of Konisburg.

Kirchhoff also showed that objects that are good emitters of heat are also good absorbers. This is Kirchhoff’s law of radiation.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - ELECTRICITYELECTRICITY

Related sites
Advertisements

CARL GAUSS (1777-1855)

1832 – Germany

 Portrait of GAUSS ©

GAUSS

An electric field may be pictured by drawing lines of force. The field is stronger where these lines crowd together, weaker where they are far apart. Electrical flux is a measure of the number of electric field lines passing through an area.

‘The electrical flux through a closed surface is proportional to the sum of the electric charges within the surface’

  

Gauss’ law describes the relationship between electric charge and electric field. It is an elegant restatement of COULOMB‘s law.

            

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMATHEMATICS

LUIGI GALVANI (1737- 98) ALESSANDRO VOLTA (1745-1827)

1791 & 1799 – Italy

‘Galvani: An electric current is produced when an animal tissue comes into contact with two different metals.

Volta: An electric current is not dependent on an animal tissue and can be produced by chemicals’

Galvani was wrong and Volta was right.

Galvani had found that by touching a dead frog’s legs with two different metal implements, the muscles in the frog’s legs would twitch. Galvani wrongly concluded it was the animal tissue that was storing the electricity, releasing it when touched by the metals. He felt he had discovered the very force of life – ‘animal electricity’ – that animated flesh and bone.

portrait of LUIGI GALVANI ©

GALVANI

Soon dozens of scientists were trying to bring corpses back to life by electrifying them. Volta was not convinced the animal muscle was the important factor in the production of the current.

He repeated Galvani’s experiments and concluded, controversially at the time, the different metals were the important factor.

A bitter dispute arose as to whose interpretation was correct. Volta began putting together different combinations of metals to see if they produced any current; later he produced a wet battery of fluid and metals. Volta’s method of producing electric current involved using discs of silver and zinc dipped in a bowl of salt solution. He reasoned that a much larger charge could be produced by stacking several discs separated by cards soaked in salt water – by attaching copper wires to each end of the ‘pile’ he successfully obtained a steady current.

The ‘voltaic pile’ was the first battery in history (1800). Napoleon Bonaparte, who at the time controlled the territory in which Volta lived, was so impressed he made him a Count and awarded him the Legion d’Honour.

portrait of ALESSANDRO VOLTA ©

VOLTA

Volt, the SI unit of electric potential, honours Volta.

Although Galvani’s theory on ‘animal electricity’ was not of any major importance, he has also achieved nominal immortality; like ‘volt’, the words ‘galvanic’ (sudden and dramatic), ‘galvanised’ (iron or steel coated with zinc) and ‘galvanometer’ (an instrument for detecting small currents) have become part of everyday language.

A volt is defined as the potential difference between two points on a conductor carrying one ampere current when the power dissipated between the points is one watt.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

CHARLES DE COULOMB (1736-1806)

1785 – France

‘The force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them’

The region around a charged object where it exerts a force is called its electric field. Another charged object placed in this field will have a force exerted on it. Coulomb’s rule is used to calculate this force.

Coulomb, a French physicist, made a detailed study of electrical attractions and repulsions between various charged bodies and concluded that electrical forces follow the same type of law as gravitation. Coulomb found a similar principle linking the relationship of magnetic forces. He believed electricity and magnetism, however, to be two separate ‘fluids’.
It was left to HANS CHRISTIAN OERSTED, ANDRE-MARIE AMPERE and MICHAEL FARADAY to enunciate the phenomenon of electromagnetism.

The SI unit of electric charge, coulomb (C), one unit of which is shifted when a current of one ampere flows for one second, is named in his honour.

He also articulated Coulomb’s rule of friction, which outlines a proportional relationship between friction and pressure.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

HANS CHRISTIAN OERSTED (1777-1851)

1820 – Denmark

‘Electric current produces a magnetic field’

drawn portrait of HANS CHRISTIAN OERSTED ©

Oersted discovered that an electric current could make the needle of a magnetic compass swivel. It was the first indication of a link between these two natural forces. Although Oersted discovered electromagnetism he did little about it. This task was left to AMPERE and FARADAY.

NEXT buttonTIMELINE

ANDRE MARIE AMPERE (1775-1836)

1827 – France

‘Two current-carrying wires attract each other if their currents are in the same direction, but repel each other if their currents are opposite.
The force of attraction or repulsion (magnetic force) is directly proportional to the product of the strengths of the currents and inversely proportional to the square of the distance between them’

portrait of ANDRE AMPERE ©

ANDRE AMPERE

Another addition to the succession of ‘inverse-square’ laws begun with NEWTON’s law of universal gravitation.
Ampere had noted that two magnets could affect each other and wondered, given the similarities between electricity and magnetism, what effect two currents would have upon each other. Beginning with electricity run in two parallel wires, he observed that if the currents ran in the same direction, the wires were attracted to each other and if they ran in opposite directions they were repelled.

He experimented with other shapes of wires and generalised that the magnetic effect produced by passing a current in an electric wire is the result of the circular motion of that current. The effect is increased when the wire is coiled. When a bar of soft iron is placed in the coil it becomes a magnet. This is the solenoid, used in devices where mechanical motion is required.

Ampere exploited OERSTED’s work, devising a galvanometer which measured electric current flow via the degree of deflection upon its magnetic needle.

He attempted to interpret all his results mathematically in a bid to find an encompassing explanation for what later became referred to as electromagnetism (Ampere had at that time christened it electrodynamics), resulting in his 1827 definition.

Ampere’s name is commemorated in the SI unit of electric current, the ampere.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

BENJAMIN FRANKLIN (1706-1790)

1752 – The New World

‘If you would not be forgotten when you are dead and rotten, either write things worth reading, or do things worth writing about’

Curious about how just about everything works, from governments to lightning rods, Franklin’s legacy, in addition to the many inventions such as lightning conductors, bifocal lenses and street lamps, was one of learning. He established one of the first public libraries as well as one of the first universities in America, Pennsylvania. He established the Democratic Party. Franklin was one of the five signatories of the Declaration of Independence from Great Britain in 1776 and was a later participant in the drafting of the American Constitution.

‘Benjamin Franklin’s choice for the signs of electric charges leads to electric current being positive, even though the charge carriers themselves are negative — thereby cursing electrical engineers with confusing minus signs ever since.
The sign of the charge carriers could not be determined with the technology of Franklin’s time, so this isn’t his fault. It’s just bad luck.’
[http://tauday.com/tau-manifesto#fn:0.18]

Franklin was a pioneer in understanding the properties and potential of electricity. He undertook studies involving electric charge and introduced the terms ‘positive’ and ‘negative’ in explaining the way substances could be attracted to or repelled by each other according to the nature of their charge. He believed these charges ultimately cancelled each other out so that if something lost electrical charge, another substance would instantly gain the same amount.

His work on electricity climaxed with his kite flying experiment of 1752. In order to prove lightning to be a form of electricity, Franklin launched a kite into a thunderstorm on a long piece of conducting string. Tying the string to a capacitor, which became charged when struck by lightning, vindicated his theories.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY