# CHARLES DE COULOMB (1736-1806)

1785 – France

‘The force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them’

The region around a charged object where it exerts a force is called its electric field. Another charged object placed in this field will have a force exerted on it. Coulomb’s rule is used to calculate this force.

Coulomb, a French physicist, made a detailed study of electrical attractions and repulsions between various charged bodies and concluded that electrical forces follow the same type of law as gravitation. Coulomb found a similar principle linking the relationship of magnetic forces. He believed electricity and magnetism, however, to be two separate ‘fluids’.
It was left to HANS CHRISTIAN OERSTED, ANDRE-MARIE AMPERE and MICHAEL FARADAY to enunciate the phenomenon of electromagnetism.

The SI unit of electric charge, coulomb (C), one unit of which is shifted when a current of one ampere flows for one second, is named in his honour.

He also articulated Coulomb’s rule of friction, which outlines a proportional relationship between friction and pressure.

# HANS CHRISTIAN OERSTED (1777-1851)

1820 – Denmark

‘Electric current produces a magnetic field’

Oersted discovered that an electric current could make the needle of a magnetic compass swivel. It was the first indication of a link between these two natural forces. Although Oersted discovered electromagnetism he did little about it. This task was left to AMPERE and FARADAY.

# ANDRE MARIE AMPERE (1775-1836)

1827 – France

‘Two current-carrying wires attract each other if their currents are in the same direction, but repel each other if their currents are opposite.
The force of attraction or repulsion (magnetic force) is directly proportional to the product of the strengths of the currents and inversely proportional to the square of the distance between them’

ANDRE AMPERE

Another addition to the succession of ‘inverse-square’ laws begun with NEWTON’s law of universal gravitation.
Ampere had noted that two magnets could affect each other and wondered, given the similarities between electricity and magnetism, what effect two currents would have upon each other. Beginning with electricity run in two parallel wires, he observed that if the currents ran in the same direction, the wires were attracted to each other and if they ran in opposite directions they were repelled.

He experimented with other shapes of wires and generalised that the magnetic effect produced by passing a current in an electric wire is the result of the circular motion of that current. The effect is increased when the wire is coiled. When a bar of soft iron is placed in the coil it becomes a magnet. This is the solenoid, used in devices where mechanical motion is required.

Ampere exploited OERSTED’s work, devising a galvanometer which measured electric current flow via the degree of deflection upon its magnetic needle.

He attempted to interpret all his results mathematically in a bid to find an encompassing explanation for what later became referred to as electromagnetism (Ampere had at that time christened it electrodynamics), resulting in his 1827 definition.

Ampere’s name is commemorated in the SI unit of electric current, the ampere.

TIMELINE

ELECTRICITY

# GUGLIELMO MARCONI (1874-1937)

1897 – Bristol, England

GUGLIELMO MARCONI (1874-1937)

Marchese Guglielmo Marconi was a brilliant manipulator of other scientist’s findings, especially those of RUDOLPH HERTZ’s breakthrough discovery of radio waves in 1888. Hertz had died shortly afterwards in 1894.

After moving from his large family estate in Italy to England, where his experiments with radio waves generated much interest, he set up the Marconi Wireless Company Limited in 1900.
The event which made him world-famous was the two thousand mile transmission of Morse code across the Atlantic in 1901.

TIMELINE

ROENTGEN

1895 – Germany

‘X-Rays are high energy radiation given off when fast-moving electrons lose energy very rapidly’

TIMELINE

# HEINRICH RUDOLPH HERTZ (1857- 94)

1888 – Germany

‘Radio waves can be produced by electric sparks. They have the same speed as light and behave as light’

In 1864 MAXWELL‘s equations predicted the existence of electromagnetic waves.
His thinking had shown that electromagnetic waves could be refracted, reflected and polarized in the same way as light. Hertz was able to measure the speed of these waves and to show that the speed is the same as that of light.

Hertz hypothesised that he could experimentally examine the waves by creating apparatus to detect electromagnetic radiation. He devised an electric circuit with a gap that would cause a spark to leap across when the circuit was closed. If Maxwell’s theory was correct and electromagnetic waves were spreading from these oscillator sparks, appropriately sensitive equipment should pick up the waves generated by the spark.
Hence he constructed the equivalent of an antenna.
His simple receiver consisted of two small balls at the ends of a loop of wire, separated by a small gap. This receiver was placed several yards from the oscillator and the electromagnetic waves would induce a current in the loop that would send sparks across the small gap. This was the first transmission and reception of electromagnetic waves. He called the waves detected by the antenna ‘Hertzian waves’.

We are now familiar with all the types of electromagnetic waves that make up the complete electromagnetic spectrum. They all travel with the speed of light and differ from each other in their frequency. We measure this frequency in hertz.

It was left to the Italian electrical engineer GUGLIELMO MARCONI to refine this equipment into a device that had the potential of transmitting a message and to develop technology for the practical use of Hertzian  waves – when they became commonly known as radio waves.

Further experimentation showed that these waves had the properties that Maxwell had predicted.
As well as being important as a newly discovered phenomenon, Hertz’s discovery helped to prove that Maxwell had been correct when he suggested that light and heat were forms of electromagnetic radiation.

Radio waves are electromagnetic waves. Other main kinds of electromagnetic waves are: gamma rays; X-rays; ultra-violet radiation; visible light; infrared radiation and microwaves.

This radiation was behaving in all the ways that would be expected for waves, the nature of the vibration and the susceptibility to reflection and refraction were the same as those of light and heat waves. Hertz found that they could be focused by concave reflectors.

Experimenting further, Hertz spotted that electrical conductors reflect this electromagnetic radiation and that non-conductors allow most of the waves to pass through.

In honour of Hertz’s achievements, the SI unit of frequency, the hertz (Hz), was named after him.

Hertz’s discoveries came at an early age. The German physicist died at the age of thirty-six.

TIMELINE

ELECTRICITY