GREGOR MENDEL (1822- 84)

1865 – Austria

  • ‘Law of Segregation: In sexually reproducing organisms, two units of heredity control each trait. Only one of such units can be represented in a single sexually reproductive cell’

  • ‘Law of Independent Assortment: Each of a pair of contrasted traits may be combined with either of another pair’

These laws laid the foundation for the science of genetics.

The biologist Lamarck (1744-1829) had proposed a theory of inheritance of acquired characteristics and had suggested that inherited characteristics are influenced by environment. Mendel planted an atypical variety of an oriental plant next to a typical variety – the offspring retained the essential traits of their parents, which meant that the characteristics that were inherited were not influenced by the environment. This simple test led Mendel to embark on the path that would lead to the discovery of the laws of heredity.

Mendel’s aim was to discover ” a generally applicable law of the formation and development of hybrids “. He addressed this by studying the effect of cross-breeding on seven pairs of contrasting characteristics of Pisum sativum, a strain of pea.
His work on peas indicated that features of the plant; seed shape, seed colour, pod shape, pod colour, flower colour, flower position and stem length; were passed on from one generation to the next by some physical element. He realised that each characteristic of a plant was inherited independently, and that the ratios of plants exhibiting each trait could be statistically predicted.

photograph of GREGOR MENDEL ©


A common assumption in Mendel’s time was that when two alternative features were combined, an average of these features would occur. For example, a tall plant and a short one would result in medium height offspring. For seven years Mendel kept an exact record of the inherited characteristics of 28,000 pea plants, taking great pains to avoid accidental cross-fertilization; then he applied mathematics to the results. These quantitative data allowed him to see statistical patterns and ratios that had eluded his predecessors.

From his analysis he found that certain characteristics of plants are due to factors passed intact from generation to generation.
Mendel observed that individual plants of the first generation of hybrids (crossbred plants) usually showed the traits of only one parent. The crossing of yellow seeded plants with green seeded ones gave rise to yellow seeds; the crossing of tall stemmed ones with short-stemmed varieties gave rise to tall-stemmed plants.

The factors determining a trait are passed on to the offspring during reproduction.

Mendel worked out that the factors for each trait are grouped together in pairs and that the offspring receives one part of a pair from each parent.

Contrary to the popular belief of the time, these factors do not merge. Any individual pea always exhibits one trait or the other, never a mixture of the two possible expressions of the trait; only one trait from each pair of factors donated by the parents would be expressed in the offspring, although there are four possible combinations of factors.
This is now described as Mendel’s law of segregation.
An offspring inherits from its parents either one trait or the other, but not both.

He decided that some factors were ‘dominant’ and some were ‘recessive’ and was able to conclude that certain expressed traits, such as yellow seeds or tall stems, were the dominant ones and that other traits, such as shortness of stem and green seeds, were recessive. It appeared that the dominant factors consumed or destroyed the recessive factors – but this could not be the case, as the second generation of hybrids exhibited both the dominant and recessive traits of their ‘grandparents’. Across a series of generations of descendants, plants did not average out to a medium, but instead inherited the original features (for example, either tallness or shortness) in consistent proportions, a ratio of 3:1, according to the dominant factor.
The 3:1 ratio would apply because the dominant factor would feature whenever it was present.

He also noted that the different pairs of factors making up the characteristics of the pea plant ( such as the pair causing flower colour, the pair causing seed shape and so on ), when crossed, occurred in all possible mathematical combinations. This convinced him that the elements regulating the different features acted independently of each other, so the inheritance of one particular colour of flower was not influenced, for example, by the inheritance of pea shape.
This is now described as Mendel’s law of independent assortment.

He first articulated his results in 1865 and in 1866, which was shortly after Darwin’s ‘Origin of Species’ appeared, published them in an article ‘Versuche über Pflanzen-Hybriden’ (Experiments with plant hybrids).

No one before him had attempted to use mathematics and statistics as a means of understanding and predicting biological processes and during his lifetime and for some time after, his results were largely ignored.

Around the time of Mendel’s death, scientists using ever improving optics to study the minute architecture of cells coined the term ‘chromosome’ to describe the long, stringy bodies in the cell nucleus.

The seven traits studied in peas
Type of seed surface smooth wrinkled
Colour of seed albumen yellow green
Colour of seed coat grey white
Form of ripe pod inflated constricted
Colour of unripe pod green yellow
Position of flowers on stem axial terminal
Length of stem tall short

‘There is doubt as to the probity of this Jesuit scholar, some claiming that his data was falsified whilst others argue that it is accurate’
Pilgrim, I. (1984) The Too-Good-to-be-True Paradox and Gregor Mendel. Journal of Heredity,#75, pp 501-2. Cited in Brake,M.L. & Hook, N. Different Engines – How science drives fiction and fiction drives science

Wikipedia-logo © (link to wikipedia)



Related sites

NIELS BOHR (1885-1962)

1913 – Denmark

‘Electrons in atoms are restricted to certain orbits but they can move from one orbit to another’

Bohr’s was the first quantum model for the internal structure of the atom.

Bohr worked with RUTHERFORD in Manchester and improved upon Rutherford’s model, which said that electrons were free to orbit the nucleus at random.

Classical physics insisted that electrons moving around the nucleus would eventually expire and collapse into the nucleus as they radiated energy. Bohr resolved the issue surrounding Rutherford’s atomic structure by applying the concept of quantum physics set out by MAX PLANCK in 1900.
He suggested that the electrons would have to exist in one of a number of specific orbits, each being defined by specific levels of energy. From the perspective of quantum theory, electrons only existed in these fixed orbits where they did not radiate energy. The electrons could move to higher-level orbits if energy was added, or fall to lower ones if they gave out energy. The innermost orbit contains up to two electrons. The next may contain up to eight electrons. If an inner orbit is not full, an electron from an outer orbit can jump into it. Energy is released as light (a photon) when this happens. The energy that is released is a fixed amount, a quantum.

Quanta of radiation would only ever be emitted as an atom made the transition between states and released energy. Electrons could not exist in between these definite steps. This quantised theory of the electrons’ orbits had the benefits of explaining why atoms always emitted or absorbed specific frequencies of electromagnetic radiation and of providing an understanding of why atoms are stable.

Bohr calculated the amount of radiation emitted during these transitions using Planck’s constant. It fitted physical observations and made sense of the spectral lines of a hydrogen atom, observed when the electromagnetic radiation (caused by the vibrations of electrons) of the element was passed through a prism. The prism breaks it up into spectral lines, which show the intensities and frequencies of the radiation – and therefore the energy emissions and absorptions of the electrons.

Each of the elements has an atomic number, starting with hydrogen, with an atomic number of one. The atomic number corresponds to the number of protons in the element’s atoms. Bohr had already shown that electrons inhabit fixed orbits around the nucleus of the atom.
Atoms strive to have a full outer shell (allowed orbit), which gives a stable structure. They may share, give away or receive extra electrons to achieve stability. The way that atoms will form bonds with others, and the ease with which they will do it, is determined by the configuration of electrons.
As elements are ordered in the periodic table by atomic number, it can be seen that their position in the table can be used to predict how they will react.

In addition to showing that electrons are restricted to orbits, Bohr’s model also suggested that

  • the orbit closest to the nucleus is lowest in energy, with successively higher energies for more distant orbits.
  • when an electron jumps to a lower orbit it emits a photon.
  • when an electron absorbs energy, it jumps to a higher orbit.

Bohr called the jump to another orbit a quantum leap.

Although it contained elements of quantum theory, the Bohr model had its flaws. It ignored the wave character of the electron. Work by WERNER KARL HEISENBERG later tackled these weaknesses.

Bohr’s theory of complementarity states that electrons may be both a wave and a particle, but that we can only experience them as one or the other at any given time. He showed that contradictory characteristics of an electron could be proved in separate experiments and none of the results can be accepted singly – we need to hold all the possibilities in mind at once. This requires a slight adjustment to the original model of atomic structure, we can no longer say that an electron occupies a particular orbit, but can only give the probability that it is there.

In 1939 he developed a theory of nuclear fission with Jon Archibald Wheeler (b.1911) and realised that the 235uranium isotope would be more susceptible to fission than the more commonly used 238uranium.
The element bohrium is named after him.

picture of the Nobel medal - link to

Wikipedia-logo © (link to wikipedia)





1888 – France

‘When a system in equilibrium is subjected to a change in conditions, it adjusts itself so as to try to oppose that change’

photo portrait of HENRI LOUIS LE CHATELIER ©

The principle is a consequence of the law of conservation of energy.

Le Chatelier’s principal is valuable in understanding how to control the industrial production of chemicals such as ammonia.
Nitrogen and hydrogen react to form ammonia. When the pressure of this system is increased, more ammonia is produced, but when the pressure is lowered, ammonia is decomposed into hydrogen and nitrogen. Thus by controlling pressure and temperature, ammonia can be produced with the minimum of waste.

Le Chatelier was a chemist and is remembered for inventing thermocouples for measuring high temperatures (1877) and oxyacetylene welding (1895).

Wikipedia-logo © (link to wikipedia)




1684 – Germany

‘A new method for maxima and minima, as well as tangents … and a curious type of calculation’

Newton invented calculus (fluxions) as early as 1665, but did not publish his major work until 1687. The controversy continued for years, but it is now thought that each developed calculus independently.
Terminology and notation of calculus as we know it today is due to Leibniz. He also introduced many other mathematical symbols: the decimal point, the equals sign, the colon (:) for division and ratio, and the dot for multiplication.

Wikipedia-logo © (link to wikipedia)