GEORG SIMON OHM (1789-1854)

1827 – Germany

‘The electric current in a conductor is proportional to the potential difference’

In equation form, V = IR, where V is the potential difference, I is the current and R is a constant called resistance.

greek symbol capital ohm (480 x 480)

Ohm’s law links voltage (potential difference) with current and resistance and the scientists VOLTA, AMPERE and OHM.

Ohm is now honoured by having the unit of electrical resistance named after him.
If we use units of VI and R, Ohm’s law can be written in units as:

volts = ampere × ohm

photograph of george simon ohm © + diagram of simple electric circuit

GEORG OHM


Wikipedia-logo © (link to wikipedia)

NEXT button - ANDRE MARIE AMPERE (1775-1836)TIMELINE

NEXT buttonELECTRICITY

Advertisements

LEONHARD EULER (1707- 83)

1755 – Switzerland

‘Analytical calculus – the study of infinite processes and their limits’

Swiss mathematician. His notation is even more far-reaching than that of LEIBNIZ and much of the mathematical notation that is in use to-day may be credited to Euler.

The number of theorems, equations and formulae named after him is enormous.
Euler made important discoveries in the analytic geometry of surfaces and the theory of differential equations.

Euler popularised the use of the symbol ‘Π‘ (Pi); e  , for the base of the natural logarithm; and i , for the imaginary unit.
Euler is credited with contributing the useful notations  f (x) , for the general function of x ; and  Σ , to indicate a general sum of terms.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - MATHEMATICSMATHEMATICS

Related sites
  • Leonhard Euler (usna.edu/)
  • Quote (boyslumber.wordpress.com)
  • Ahmad Syaiful Rizal WordPress site (ahmadsyaifulrizalmath.wordpress.com/2013/02/17/144/)

WILHELM GOTTLIEB DAIMLER (1834-1900)

1885 – Germany

Daimler was convinced that steam power was outdated. In 1885 he perfected the first petroleum-injected internal combustion engine and produced the first motorcycle and the first four-wheeled petrol driven car.

early motor vehicle

The foundation for Daimler’s work had already been laid in the creation of two and four-stroke gas-fuelled internal combustion engines by early pioneers Joseph Etienne Lenoir (1822-1900), Alphonse Beau de Rochas (1815-93) and Nikolaus August Otto (1832-91).

Daimler-Benz

Although liquid petroleum was well-known, it had been of no use in developing the internal combustion engine because the liquid could not be compressed in the same manner as gas. The four-stroke engine awaited the development of the carburetor, which converted the liquid petroleum into a thin spray, which could be compressed and sparked.

 

photo portrait of DAIMLER & BENZ ©

DAIMLER & BENZ

In 1885 Karl Benz (1844-1929) designed and constructed a three-wheel vehicle powered by a 0.75 horsepower engine.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - THE ENGINETHE ENGINE

WERNER HEISENBERG (1901- 76)

1927 – Germany

‘It is impossible to determine exactly both the position and momentum of a particle (such as an electron) simultaneously’

The principle excludes the existence of a particle that is stationary.

To measure both the position and momentum ( momentum = mass × velocity ) of a particle simultaneously requires two measurements: the act of performing the first measurement will disturb a particle and so create uncertainty in the second measurement.
Thus the more accurately a position is known; the less accurately can the momentum be determined.

The disturbance is so small it can be ignored in the macroscopic world, but is quite dramatic for particles in the microscopic world.
MAX BORN’S ‘probabilistic’ interpretation, expressed at about the same time, concerning the likelihood of finding a particle at any point through probability defined by the amplitude of its associated wave, led to similar conclusions.

The uncertainty principle also applies to energy and time. A particle’s kinetic energy cannot be measured with complete precision either.

Heisenberg suggested the model of the proton and neutron being held together in the nucleus of the atom after the work of JAMES CHADWICK who discovered the neutron in 1932.

Heisenberg decided to try to develop a new model of the atom, more fundamentally based on quantum theory that worked for all atoms. He believed the approach of trying to visualise a physical model of the atom was destined to fail because of the paradoxical wave-particle nature of electrons.

Every particle has an associated wave. The position of a particle can be precisely located where the wave’s undulations are most intense. But where the wave’s undulations are most intense, the wavelength is also at its most ill-defined, and the velocity of the associated particle is impossible to determine. Similarly, a particle with a well-defined wavelength has a precise velocity but a very ill-defined position.

Since the orbits of electrons could not be observed, he decided to ignore them and focus instead on what could be observed and measured; namely the energy they emitted and absorbed, as shown in the spectral lines. He tried to devise a mathematical way of representing the orbits of electrons, and to use this as a way of predicting the atomic features shown up in the spectral lines.
He showed that matrix mechanics could account for many of the properties of atoms, including those with more than one electron.

Together with PAUL DIRAC, Pascual Jordan created a new set of equations based on the rival theories of Schrödinger and Heisenberg, which they called ‘transformation theory’. Whilst studying these equations, Heisenberg noticed the paradox that measurements of position and velocity (speed and direction) of particles taken at the same time gave imprecise results. He believed that this uncertainty was a part of the nature of the sub-atomic world. The act of measuring the velocity of a subatomic particle will change it, making the simultaneous measurement of its position invalid.

An unobserved object is both a particle and a wave. If an experimenter chooses to measure the object’s velocity, the object will transform itself into a wave. If an experimenter chooses to measure its position, it will become a particle. By choosing to observe either one thing or the other, the observer is actually affecting the form the object takes.
The practical implication of this is that one can never predict where an electron will be at a precise moment, one can only predict the probability of its being there.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

NEXT buttonQUANTUM ELECTRODYNAMICS

ALEXANDER FLEMING (1881-1955)

1929 – UK

‘First identification of an antibiotic – the discovery of penicillin’

The chance discovery of a mould in 1928 led to the development of a non-toxic drug, which is used to combat the bacteria that infect wounds.

Whilst Paul Erlich (1854-1915) worked in Germany to produce a ‘magic-bullet’, a compound or dye that could stick to bacteria and damage them, Alexander Fleming’s chance discovery of the antibacterial properties of the mould Penicillium notatum led him to conclude there was a chemical produced by the mould that would attack the bacterial agents of disease.

Whilst searching for a naturally occurring bacteria-killer, Fleming’s experiments were concentrated on the body’s own sources, tears, saliva and nasal mucus.
The chance discovery of the anti-bacterial properties of Penicillium notatum was not developed commercially until World War Two over a decade later.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMICROBES

HEINRICH OLBERS (1758-1840)

1823 – Germany

‘Why is the sky dark at night?’

This question puzzled astronomers for centuries and no, the answer is not because the sun is on the other side of the planet.

Olbers pointed out that if there were an infinite number of stars evenly distributed in space, the night sky should be uniformly bright. He believed that the darkness of the night sky was due to the adsorption of light by interstellar space.

This is wrong. Olbers’ question remained a paradox until 1929 when it was discovered that the galaxies are moving away from us and the universe is expanding. The distant galaxies are moving away so fast that the intensity of light we receive from them is diminished. In addition, this light is shifted towards the red end of the spectrum. These two effects significantly reduce the light we receive from distant galaxies, leaving only the nearby stars, which we see as points of light in a darkened sky.

diagram explaining reduced light intensity as the observer travels further from the source

What is light intensity?

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE STARSTHE STARS

Related articles

JOSEF VON FRAUNHOFER (1787-1826)

1823 – Germany

‘The spectroscope’

A significant improvement on the apparatus used by Newton. Sunlight, instead of passing through a pinhole before striking a prism, is passed through a long thin slit in a metal plate. This creates a long ribbon-like spectrum, which may be scanned from end to end with a microscope.

image of the visible portion of the electromagnetic spectrum showing a series of dark fraunhofer lines

Cutting across the ribbon of rainbow colours are thin black lines. The lines are present even when a diffraction grating is used instead of a prism, proving that the lines are not produced by the material of a prism, but are inherent in sunlight.

An equivalent way of describing colours is as light waves of different sizes.
The wavelength of light is fantastically small, on average about a thousandth of a millimeter, with the wavelength of red light being about twice as long as that of blue light.

Fraunhofer’s black lines correspond to missing wavelengths of light.

By 1823 Fraunhofer had measured the positions of 574 spectral lines, labeling the most prominent ones with the letters of the alphabet. The lines labeled with the letters ‘H’ and ‘K’ correspond to light at a wavelength of 0.3968 thousandths of a millimeter and 0.3933 thousandths of a millimeter, respectively. The lines are present in the spectrum of light from stars, usually in different combinations.

Fraunhofer died early at the age of 39 and it was left to the German GUSTAV KIRCHHOFF to make the breakthrough that explained their significance.

Astronomers today know the wavelengths of more than 25,000 ‘Fraunhofer lines’.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - THE STARSTHE STARS