CHRISTIAN THEOLOGY & WESTERN SCIENCE

bust said to depict a likeness of Socrates

The speculative Greek philosophers, considering the great overarching principles that controlled the Cosmos, were handicapped by a reluctance to test their speculations by experimentation.
At the other end of the spectrum were the craftsmen who fired and glazed pottery, who forged weapons out of bronze and iron. They in turn were hindered by their reluctance to speculate about the principles that governed their craft.

WESTERN SCIENCE is often credited with discoveries and inventions that have been observed in other cultures in earlier centuries.
This can be due to a lack of reliable records, difficulty in discerning fact from legend, problems in pinning down a finding to an individual or group or simple ignorance.

The Romans were technologists and made little contribution to pure science and then from the fall of Rome to the Renaissance science regressed. Through this time, science and technology evolved independently and to a large extent one could have science without technology and technology without science.

Later, there developed a movement to ‘Christianise Platonism’ (Thierry of Chartres).

Platonism at its simplest is the study and debate of the various arguments put forward by the Greek philosopher PLATO (428/7-348/7 BCE).
The philosopher Plotinus is attributed with having founded neo-Platonism, linking Christian and Gnostic beliefs to debate various arguments within their doctrines. One strand of thought linked together three intellectual states of being: the Good (or the One), the Intelligence and the Soul. The neo-Platonic Academy in Greece was closed by the Emperor Justinian in CE 529.
During the early years of the Renaissance, texts on neo-platonism began to be reconsidered, translated and discoursed.

Aristotle’s four causes, from the ‘Timaeus’, were attributed to the Christian God, who works through secondary causes (such as angels).

Efficient Cause – Creator – God the Father

Formal Cause – Secondary agent – God the Son

Material Cause – The four elements: earth, air, fire & water.
Because these four are only fundamental forms of the single type of matter, they cannot be related to any idea of ‘elements’ as understood by modern science – they could be transmuted into each other. Different substances, although composed of matter would have different properties due to the differing amounts of the qualities of form and spirit. Thus a lump of lead is made of the same type of matter (fundamental form) as a lump of gold, but has a different aggregation of constituents. Neither lead nor gold would contain much spirit – not as much as air, say, and certainly not as much as God, who is purely spiritual. ( ALCHEMY )

Final Cause – Holy Spirit

All other is ‘natural’ – underwritten by God in maintaining the laws of nature without recourse to the supernatural.
Science was the method for investigating the world. It involved carrying out careful experiments, with nature as the ultimate arbiter of which theories were right and which were wrong.

Robert Grosseteste (1168-1253) Bishop of Lincoln (Robert ‘Bighead’) – neo-Platonic reading of Genesis – emanation of God’s goodness, like light, begins creation. Light is thus a vehicle of creation and likewise knowledge (hence ‘illumination’), a dimensionless point of matter with a dimensionless point of light superimposed upon it (dimensions are created by God). Spherical radiation of light carries matter with it until it is dissipated. Led to studies of optical phenomena (rainbow, refraction, reflection).

Picture of stained glass window said to portray ROBERT GROSSETESTE ©

ROBERT GROSSETESTE

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

ANAXAGORAS (c.500 – c.428 BC)

‘The notion of the indivisible particle’

Anaxagoras came from Ionia but settled in Athens, where he remained for thirty years and taught both Pericles and Euripides. Charged with impiety because of his theory that the Sun is a red-hot stone (such an explanation, denying the role of Helios the sun-god, was enough to warrant prosecution) he fled Athens before the trial and settled in Asia Minor.
What we know about Anaxagoras is based on references to him by later writers.

In the cosmology of Anaxagoras, the Universe began as a homogenous sea of identical basic particles. Nous gave this sea a stir, in the knowledge that in time the particles would so combine to arrange themselves such that everything would be as it is today.

Picture of a document showing a seal with a likeness of Anaxagoras ©

Nous was a vital principle akin to the life force of vitalism – the nearest English words being ‘mind’ or ‘intellect’.
The range of the word ‘Nous’ is vastly greater, however, as it refers to the combination of insight and intuition which permits the apprehension of the fundamental principles of the cosmos – the concept is closer to the oriental idea of ‘seeing’ than the occidental notion of intelligence founded upon EUCLIDEAN LOGIC.

At the same time, Nous could be the creative, motive intelligence behind the cosmos, almost indistinguishable from the Christian concept of the will of God.

Bust said to be of ANAXAGORAS ©

ANAXAGORAS

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonATOM

ALBERT MICHELSON (1852-1931) EDWARD MORLEY (1838-1923)

1887 – USA

‘The aim of the experiment was to measure the effect of the Earth’s motion on the speed of light’

This celebrated experiment found no evidence of there being an effect.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

nobelprize_org_colorbox_logo - link to http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/illpres/introduction.html

NEXT buttonTIMELINE

NEXT buttonRELATIVITY

Related articles

WILHELM GOTTLIEB DAIMLER (1834-1900)

1885 – Germany

Daimler was convinced that steam power was outdated. In 1885 he perfected the first petroleum-injected internal combustion engine and produced the first motorcycle and the first four-wheeled petrol driven car.

early motor vehicle

The foundation for Daimler’s work had already been laid in the creation of two and four-stroke gas-fuelled internal combustion engines by early pioneers Joseph Etienne Lenoir (1822-1900), Alphonse Beau de Rochas (1815-93) and Nikolaus August Otto (1832-91).

Daimler-Benz

Although liquid petroleum was well-known, it had been of no use in developing the internal combustion engine because the liquid could not be compressed in the same manner as gas. The four-stroke engine awaited the development of the carburetor, which converted the liquid petroleum into a thin spray, which could be compressed and sparked.

 

photo portrait of DAIMLER & BENZ ©

DAIMLER & BENZ

In 1885 Karl Benz (1844-1929) designed and constructed a three-wheel vehicle powered by a 0.75 horsepower engine.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - THE ENGINETHE ENGINE

LINUS PAULING (1901- 94)

1931 USA

‘A framework for understanding the electronic and geometric structure of molecules and crystals’

An important aspect of this framework is the concept of hybridisation: in order to create stronger bonds, atoms change the shape of their orbitals (the space around a nucleus in which an electron is most likely to be found) into petal shapes, which allow more effective overlapping of orbitals.

A chemical bond is a strong force of attraction linking atoms in a molecule or crystal. BOHR had already shown that electrons inhabit fixed orbits around the nucleus of the atom. Atoms strive to have a full outer shell (allowed orbit), which gives a stable structure. They may share, give away or receive extra electrons to achieve stability. The way atoms will form bonds with others, and the ease with which they will do it, is determined by the configuration of electrons.

Earlier in the century, Gilbert Lewis (1875-1946) had offered many of the basic explanations for the structural bonding between elements, including the sharing of a pair of electrons between atoms and the tendency of elements to combine with others to fill their electron shells according to rigidly defined orbits (with two electrons in the closest orbit to the nucleus, eight in the second orbit, eight in the third and so on).

Pauling was the first to enunciate an understanding of a physical interpretation of the bonds between molecules from a chemical perspective, and of the nature of crystals.

In a covalent bond, one or more electrons are shared between two atoms. So two hydrogen atoms form the hydrogen molecule, H2, by each sharing their single electron. The two atoms are bound together by the shared electrons. This was proposed by Lewis and Irving Langmuir in 1916.

In an ionic bond, one atom gives away one or more electrons to another atom. So in common salt, sodium chloride, sodium gives away its spare electron to chlorine. As the electron is not shared, the sodium and chlorine atoms are not bound together in a molecule. However, by losing an electron, sodium acquires a positive charge and chlorine, by gaining an electron, acquires a negative charge. The resulting sodium and chlorine ions are held in a crystalline structure. Until Pauling’s explanation it was thought that they were held in place only by electrical charges, the negative and positive ions being drawn to each other.

Pauling’s work provided a value for the energy involved in the small, weak hydrogen bond.
When a hydrogen atom forms a bond with an atom which strongly attracts its single electron, little negative  charge is left on the opposite side of the hydrogen atom. As there are no other electrons orbiting the hydrogen nucleus, the other side of the atom has a noticeable positive charge – from the proton in the nucleus. This attracts nearby atoms with a negative charge. The attraction – the hydrogen bond – is about a tenth of the strength of a covalent bond. 
In water, attraction between the hydrogen atoms in one water molecule and the oxygen atoms in other water molecules makes water molecules ‘sticky’. It gives ice a regular crystalline structure it would not have otherwise. It makes water liquid at room temperature, when other compounds with similarly small molecules are gases at room temperature.Water10_animation

One aspect of the revolution he brought to chemistry was to insist on considering structures in terms of their three-dimensional space. Pauling showed that the shape of a protein is a long chain twisted into a helix or spiral. The structure is held in shape by hydrogen bonds.
He also explained the beta-sheet, a pleated sheet arrangement given strength by a line of hydrogen bonds.

He devised the electronegativity scale, which ranks elements in order of their electronegativity – a measure of the attraction an atom has for the electrons involved in bonding (0.7 for caesium and francium to 4.0 for fluorine). The electronegativity scale lets us say how covalent or ionic a bond is.

Pauling’s application of quantum theory to structural chemistry helped to establish the subject. He took from quantum mechanics the idea of an electron having both wave-like and particle-like properties and applied it to hydrogen bonds. Instead of there being just an electrical attraction between water molecules, Pauling suggested that wave properties of the particles involved in hydrogen bonding and those involved in covalent bonding overlap. This gives the hydrogen bonds some properties of covalent bonds.

1922 – while investigating why atoms in metals arrange themselves into regular patterns, Pauling used X-ray diffraction at CalTech to determine the structure of molybdenum.

When X-rays are directed at a crystal, some are knocked off course by striking atoms, while others pass straight through as if there are no atoms in their path. The result is a diffraction pattern – a pattern of dark and light lines that reveal the positions of the atoms in the crystal.
Pauling used X-ray and electron diffraction, magnetic effects and measurements of the heat of chemical reactions to calculate the distances and angles between atoms forming bonds. In 1928 he published his findings as a set of rules for working out probable crystalline structures from the X-ray diffraction patterns.

1939 – ‘The Nature of the Chemical Bond and the Structure of Molecules’
Pauling suggests that in order to create stronger bonds, atoms change the shapes of their waves into petal shapes; this was the ‘hydridisation of orbitals’.
Describing hybridisation, he showed that the labels ‘ionic’ and ‘covalent’ are little more than a convenience to group bonds that really lie on a continuous spectrum from wholly ionic to wholly co-valent.

Pauling developed six key rules to explain and predict chemical structure. Three of them are mathematical rules relating to the way electrons behave within bonds, and three relate to the orientation of the orbitals in which the electrons move and the relative position of the atomic nuclei.

          

   

1951 – published his findings one year after WILLIAM LAWRENCE BRAGG’s team at the Cavendish Laboratory.

CARBON BONDING
As carbon has four filled and four unfilled electron shells it can form bonds in many different ways, making possible the myriad organic compounds found in plants and animals. The concept of hybridisation proved useful in explaining the way carbon bonds often fall between recognised states, which opened the door to the realm of organic chemistry.

X-ray diffraction alone is not very useful for determining the structure of complex organic molecules, but it can show the general shape of the molecule. Pauling’s work showed that physical chemistry at the molecular level could be used to solve problems in biology and medicine.

  

A problem that needed resolving was the distance between particular atoms when they joined together. Carbon has four bonds, for instance, while oxygen can form two.It would seem that in a molecule of carbon dioxide, which is made of one carbon and two oxygen atoms, two of carbon’s bonds will be devoted to each oxygen.

diagram of CO2 bond length

CO2 bond length

Well-established calculations gave the distance between the carbon and oxygen atoms as 1.22 × 10-10m. Analysis gave the size of the bond as 1.16 Angstroms. The bond is stronger, and hence shorter. Pauling’s quantum .3-2. explanation was that the bonds within carbon dioxide are constantly resonating between two alternatives. In one position, carbon makes three bonds with one of the oxygen molecules and has only one bond with the other, and then the situation is reversed.

(image source)

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonX-RAY DIFFRACTION

<< top of page

EDWARD LORENZ (1917-2008)

1963 – USA

‘The behaviour of a dynamic system depends on its small initial conditions’

Photograph of EDWARD LORENZ ©

EDWARD LORENZ

While working at the Massachusetts Institute of Technology, Lorenz developed a simple computer model to forecast changes in weather at a number of places. In one of his equations he used a rounded number (for example 0.156 127 became 0.156); his model now predicted quite different conditions.
He suggested that even a small initial unpredictable condition such as a flapping butterfly could produce a larger global change in weather.

The butterfly effect is one aspect of chaos theory that describes disorderly systems. The behaviour of a chaotic system is difficult to predict because there are so many variable or unknown factors in the system.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Chaos in a driven double well system

JOHN DALTON

1808 – England

‘All matter is made up of atoms, which cannot be created, destroyed or divided. Atoms of one element are identical but different from those of other elements. All chemical change is the result of combination or separation of atoms’

Dalton struggled to accept the theory of GAY-LUSSAC because he believed, as a base case, that gases would seek to combine in a one atom to one atom ratio (hence believing the formula of water to be HO not H2O). Anything else would contradict Dalton’s theory on the indivisibility of the atom, which he was not prepared to accept.

The reason for the confusion was that at the time the idea of the molecule was not understood.
Dalton believed that in nature all elementary gases consisted of indivisible atoms, which is true for example of the inert gases. The other gases, however, exist in their simplest form in combinations of atoms called molecules. In the case of hydrogen and oxygen, for example, their molecules are made up of two atoms, described as H2 and O2 respectively.

Gay-Lussac examined various substances in which two elements form more than one type of compound and concluded that if two elements A and B combine to form more than one compound, the different masses of A that combine with a fixed mass of B are in a simple whole number ratio. This is the law of multiple proportions.

AVOGADRO’s comprehension of molecules helped to reconcile Gay-Lussac’s ratios with Dalton’s theories on the atom.

Gay-Lussac’s ratio for water could be explained by two molecules of hydrogen (four ‘atoms’) combining with one molecule of oxygen (two ‘atoms’) to result in two molecules of water (2H2O).

2H2 + O2 ↔ 2H2O

When Dalton had considered water, he could not understand how one atom of hydrogen could divide itself (thereby undermining his indivisibility of the atom theory) to form two particles of water. The answer proposed by Avogadro was that oxygen existed in molecules of two and therefore the atom did not divide itself at all.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE ATOMTHE ATOM