JOHN DALTON (1766-1844)

1801 England

‘The total pressure of a mixture of gases is the sum of the partial pressures exerted by each of the gases in the mixture’

Partial pressures of gases:
Dalton stated that the pressure of a mixture of gases is equal to the sum of the pressures of the gases in the mixture. On heating gases they expand and he realised that each gas acts independently of the other.

Each gas in a mixture of gases exerts a pressure, which is equal to the pressure it would exert if it were present alone in the container; this pressure is called partial pressure.

Dalton’s law of partial pressures contributed to the development of the kinetic theory of gases.

His meteorological observations confirmed the cause of rain to be a fall in temperature, not pressure and he discovered the ‘dew point’ and that the behaviour of water vapour is consistent with that of other gases.

He showed that a gas could dissolve in water or diffuse through solid objects.

Graph demonstrating the varying solubility of gases

The varying solubility of gases

Further to this, his experiments on determining the solubility of gases in water, which, unexpectedly for Dalton, showed that each gas differed in its solubility, led him to speculate that perhaps the gases were composed of different ‘atoms’, or indivisible particles, which each had different masses.
On further examination of his thesis, he realised that not only would it explain the different solubility of gases in water, but would also account for the ‘conservation of mass’ observed during chemical reactions – as well as the combinations into which elements apparently entered when forming compounds – because the atoms were simply ‘rearranging’ themselves and not being created or destroyed.

In his experiments, he observed that pure oxygen will not absorb as much water vapour as pure nitrogen – his conclusion was that oxygen atoms were bigger and heavier than nitrogen atoms.

‘ Why does not water admit its bulk of every kind of gas alike? …. I am nearly persuaded that the circumstance depends on the weight and number of the ultimate particles of the several gases ’

In a paper read to the Manchester Society on 21 October 1803, Dalton went further,

‘ An inquiry into the relative weight of the ultimate particles of bodies is a subject as far as I know, entirely new; I have lately been prosecuting this enquiry with remarkable success ’

Dalton described how he had arrived at different weights for the basic units of each elemental gas – in other words the weight of their atoms, or atomic weight.

Dalton had noticed that when elements combine to make a compound, they always did so in fixed proportions and went on to argue that the atoms of each element combined to make compounds in very simple ratios, and so the weight of each atom could be worked out by the weight of each element involved in a compound – the idea of the Law of Multiple Proportions.

When oxygen and hydrogen combined to make water, 8 grammes of oxygen was used for every 1 gramme of hydrogen. If oxygen consisted of large numbers of identical oxygen atoms and hydrogen large numbers of hydrogen atoms, all identical, and the formation of water from oxygen and hydrogen involved the two kinds of atoms colliding and sticking to make large numbers of particles of water (molecules) – then as water has an identity as distinctive as either hydrogen or oxygen, it followed that water molecules are all identical, made of a fixed number of oxygen atoms and a fixed number of hydrogen atoms.

Dalton realised that hydrogen was the lightest gas, and so he assigned it an atomic weight of 1. Because of the weight of oxygen that combined with hydrogen in water, he first assigned oxygen an atomic weight of 8.

There was a basic flaw in Dalton’s method, because he did not realise that atoms of the same element can combine. He assumed that a compound of atoms, a molecule, had only one atom of each element. It was not until Italian scientist AMADEO AVOGADRO’s idea of using molecular proportions was introduced that he would be able to calculate atomic weights correctly.

In his book of 1808, ‘A New System of Chemical Philosophy’ he summarised his beliefs based on key principles: atoms of the same element are identical; distinct elements have distinct atoms; atoms are neither created nor destroyed; everything is made up of atoms; a chemical change is simply the reshuffling of atoms; and compounds are made up of atoms from the relevant elements. He published a table of known atoms and their weights, (although some of these were slightly wrong), based on hydrogen having a mass of one.

Nevertheless, the basic idea of Dalton’s atomic theory – that each element has its own unique sized atoms – has proved to be resoundingly correct.

If oxygen atoms all had a certain weight which is unique to oxygen and hydrogen atoms all had a certain weight that was unique to hydrogen, then a fixed number of oxygen atoms and a fixed number of hydrogen atoms combined to form a fixed weight of water molecules. Each water molecule must therefore contain the same weight of oxygen atoms relative to hydrogen atoms.

Here then is the reason for the ‘law of fixed proportions’. It is irrelevant how much water is involved – the same factors always hold – the oxygen atoms in a single water molecule weigh 8 times as much as the hydrogen atoms.

Dalton wrongly assumed that elements would combine in one-to-one ratios as a base principle, only converting into ‘multiple proportions’ (for example from carbon monoxide, CO, to carbon dioxide, CO2) under certain conditions. Each water molecule (H2O) actually contains two atoms of hydrogen and one atom of oxygen. An oxygen atom is actually 16 times as heavy as a hydrogen atom. This does not affect Dalton’s reasoning.

The law of fixed proportions holds because a compound consists of a large number of identical molecules, each made of a fixed number of atoms of each component element.

Although the debate over the validity of Dalton’s thesis continued for decades, the foundation for the study of modern atomic theory had been laid and with ongoing refinement was gradually accepted.

A_New_System_of_Chemical_Philosophy - DALTON's original outline

A_New_System_of_Chemical_Philosophy

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE ATOMTHE ATOM

<< top of page

Advertisements

LOUIS PASTEUR (1822- 95)

1865 – France

‘Many human diseases have their origin in micro-organisms’

1862 – ‘Memoire sur les corpuscles organises qui existent dans l’atmosphere’ (Note on Organized Corpuscles that exist in the Atmosphere) – Puts an end to centuries of debate on the theory of spontaneous generation.

Although a chemist, Pasteur is best remembered for his contributions to medicine. His name is used to describe the process of ‘pasteurisation’.
Pasteur proved that living microorganisms cause fermentation. Previously scientists had assumed that fermentation was a chemical process.
Pasteur showed that the alcohol in fermentation was made by the yeast microbe. He also realised that when fermentation went wrong it was due to other germs.

In 1863 he showed that brief, moderate heating of wine and beer kills germs, thereby sterilizing the foodstuffs and ending the fermentation process. The process now known as pasteurisation is still used in the food industry.

His investigations led him to believe that microorganisms could also cause disease in humans. Pasteur realized the dangers of infection, but the English surgeon JOSEPH LISTER (1827-1912) is credited with developing and systematizing the notion of antiseptic surgery so that operations could be made safer if an ‘antiseptic’ procedure was introduced to destroy microbes and curb the infections that followed wounds or surgery.

In 1876, Pasteur confirmed the findings of ROBERT KOCH’s discovery of the anthrax bacillus. After EDWARD JENNER’s breakthrough in the development of vaccination against smallpox, little had been done to take advantage of the potential of this treatment against other disease.

In 1882 Pasteur successfully applied his discovery of vaccination by attenuated culture of microorganisms to anthrax and in 1885 to the treatment of rabies in humans.

On 14 November 1888 the Pasteur Institute opened in Paris.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - MICROBESMICROBES

CAROLUS LINNAEUS (1707- 78)

1735 – Sweden

‘A system for naming organisms by assigning them scientific names consisting of two parts’

Portrait of Linnaeus ©

LINNAEUS

Each species is given a two-word Latin name – The genus name that comes first and begins with a capital letter, and the species name, which begins with a lower case letter. The genus name is often abbreviated, and the names are always written in italics or underlined. The Linnaean system has six classification categories – in descending order, kingdoms, phyla, classes, orders, genera and species. Only two are used for naming organisms.

German botanist Rudolph Camerarius (1665-1721) had shown that no seed would grow without first being pollinated. In 1729, Linnaeus wrote in a paper about ‘the betrothal of plants, in which …..the perfect analogy with animals is concluded’. He insisted that it is the stamens where pollen is made (the ‘bridegrooms’) and the pistils where seeds are made (‘the brides’) that are the sexual organs, and not the petals as had been considered previously.

As botanists and zoologists looked at nature, or ‘Creation’, there was no way of classifying the animal kingdom depicted in bestiaries of the time but alphabetically; or of distinguishing the real from the mythical.

Linnaeus developed a system of classification that had two key features. Starting with the plant kingdom, Linnaeus grouped plants according to their sexual organs – the parts of the plant involved in reproduction. Each plant species was given a two-part Latin name. The first part always refers to the name of the group it belongs to, and the second part is the species name.

Linnaeus divided all flowering plants into twenty-three classes according to the length and number of their stamens – the male organs, – then subdivided these into orders according to the number of pistils – female organs, – that they possessed. A twenty-fourth class, the Cryptogamia, included the mosses and other non-flowering plants.

illustration of flower reproductive structures ©

Many people were offended by the sexual overtones in Linnaeus’s scheme. One class he named Diandria, meaning ‘two husbands in one marriage’, while he said ‘the calyx might be regarded as the labia majora; one could regard the corolla as the labia minora’. For almost a century, botany was not seen as a decent thing for young-ladies to be interested in.

Linnaeus’s scheme was simple and practical and in 1745 he published an encyclopedia of Swedish plants, when he began considering the names of species. Realizing he had to get the names in place before someone else gave plants other names, he gave a binomial label to every known plant species and in 1753 published all 5,900 in his Species Plantarium.

Believing his work on the plant kingdom complete, he turned his attention to the animal kingdom. In his earlier Systema Naturae of 1735, he had used the classification ‘Quadrupeds’ (four-legged creatures) but replaced this with Mammals, using the presence of mammary glands for suckling young as a more crucial distinguishing characteristic. The first or prime group in the Mammals was the primates, which included Homo sapiens (wise man). His catalogue of animals was included in the tenth edition of Systema Naturae, listed with binomial names.

By the time Linnaeus died it was the norm for expeditions around the world to take a botanist with them, hence CHARLES DARWIN’s famous voyage on the Beagle.

Wikipedia-logo © (link to wikipedia)

Wikispecies-logo ©

NEXT buttonTIMELINE

EDWIN McMILLAN (1907- 90) GLENN SEABORG (1912- 99)

1940 – USA

‘Elements heavier than uranium in the periodic table (transuranium elements) are made artificially. Uranium (U, atomic number 92) is the heaviest element known to exist naturally in detectable amounts on the Earth’

Photograph of SEABORG & McMILLAN together ©

SEABORG & McMILLAN

In 1933 ENRICO FERMI showed that the nucleus of most elements would absorb a neutron.
In 1940 McMillan, a nuclear physicist, produced and identified the first artificial element, neptunium (Np, 93). In 1943 Seaborg, a chemist, succeeded in creating plutonium (Pu, 94).

So far more than 20 synthetic elements have been created. All are unstable, decaying with half-lives ranging from a year to a few milliseconds.
At least thirteen transuranium elements have been named after scientists:-
curium (Cm, 96: Marie and Pierre Curie [1944]), einsteinium (Es, 99: Albert Einstein [1952]), fermium (Fm, 100: Enrico Fermi [1952]), mendelevium (Md, 101: Dmitri Mendeleev [1955]), nobelium (No, 102: Swedish chemist Alfred Nobel (1833-96), known for his bequest for the foundation of the Nobel Prizes [1956]), lawrencium (Lr, 103: Ernest O. Lawrence, a physicist best known for development of the cyclotron [1961]), rutherfordium (Rf, 104: Ernest Rutherford [1968]), seaborgium (Sg, 106: Glenn Seaborg [1974]), bohrium (Bh, 107: Niels Bohr [1981]), meitnerium (Mt, 109: Lise Meitner [1982]); roentgenium (Rg, 111: Wilhelm Conrad Röntgen was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt in Germany [1994]), copernicium (Cn, 112: named after astronomer Nicolaus Copernicus [1996]), flerovium (Fl, 114 named after Soviet physicist Georgy Flyorov [2012]).

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

OTTO HAHN (Germany 1879-1968) LEIS MEITNER (Austria 1878-1968) FRITZ STRASSMANN (Germany 1902- 80)

1938 – Germany

‘Nuclear Fission. The breaking up of the nucleus of a heavy atom into two or more lighter atoms. Energy is released during the process’

A reinterpretation of the results of the mid 1930s neutron-bombarding experiments of ENRICO FERMI with uranium offered an alternative explanation to Fermi’s own idea that the uranium had transmuted into new heavier elements. The three German scientists offered the explanation that the uranium nucleus had in fact been broken down into a number of smaller nuclei

with the release of potentially huge amounts of energy under the rules of Einstein’s formula E = mc2.

NEXT buttonTIMELINE

photo of lise meitner ©

LISE MEITNER

Wikipedia-logo © (link to wikipedia)

Wikipedia-logo © (link to wikipedia)

    

CARL WILHELM SCHEELE (1742- 86)

1772 – Sweden

Portrait of CARL WILHELM SCHEELE ©

CARL WILHELM SCHEELE

Scheele discovers oxygen two years before Joseph Priestly, but does not publish his findings until 1777.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

ANTON VAN LEEUWENHOEK (1632-1723)

1674 – Netherlands

Leeuwenhoek was probably inspired to take up microscopy after seeing a copy of HOOKE’s Micrographia, though as a draper he was likely to have already been using lenses to examine cloth.
Unlike Hooke, Leeuwenhoek did not use a two lens compound microscope, but a single high quality lens, which could be described simply as a magnifying glass rather than a microscope. Leeuwenhoek is known to have made over 500 of these single–lens microscopes. They are simple devices just a few inches long, with the lens mounted in a tiny hole in a brass plate. The specimen is mounted on a point that sticks up in front of the lens. Two screws move the specimen for focusing. All else that is needed is careful lighting and a very steady, sharp eye.

After an introduction to Henry Oldenburg of the Royal Society in London from Dutch physician and anatomist Regnier de Graaf (discoverer of the egg-making follicles in the human ovary which now bear his name), Leeuwenhoek was encouraged to write to the Society’s journal ‘Philosophical Transactions’.

Leeuwenhoek’s letters were translated into Latin and English from the Dutch and he reported seeing tiny creatures in lake-water.

‘ I found floating therein divers earthly particles, and some green streaks, spirally wound serpentwise, and orderly arranged after the manner of copper or tin worms which distillers use to cool their liquors as they distil over. The whole circumference of each of these streaks was about the thickness of a hair of one’s head ’

Leeuwenhoek’s descriptions of ‘animalcules’ in water from different sources – rainwater, pond water, well water, sea water and so on – were verified by independent witnesses, including the vicar of Delft. Hooke too confirmed his findings with his own observations performed in front of expert witnesses, including Sir Christopher Wren.
Leeuwenhoek came close to understanding that bacteria were germs that cause disease but it took another century before LOUIS PASTEUR made that step.

Logo for Nikon 'Small world' competition & link to web-site
Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMICROSCOPY

Related sites